Flexible and Coherent Test/Estimation Procedure Based on Restricted Mean Survival Times
survRM2adapt-package.Rd
Estimates the restricted mean survival time (RMST) with a time window [0, tau], where tau is selected during the procedure from among the time points provided by the user. It also estimates the RMST with a time window [tau1, tau2], where tau1 is selected during the procedure, same as above.
References
Horiguchi M, Cronin A, Takeuchi M, Uno H. A flexible and coherent test/estimation procedure based on restricted mean survival times for censored time-to-event data in randomized clinical trials. Statistics in Medicine 2018. DOI:10.1002/sim.7661.
Horiguchi M, Tian L, Uno H. On assessing survival benefit of immunotherapy using long-term restricted mean survival time. Statistics in Medicine 2023. DOI:10.1002/sim.9662.
Examples
#--- Adaptive RMST test/estimation method by rmst2adapt() ---#
data = rmst2adapt.sample.data()
nmethod = 100 #This is only for example use.
#Recommended to specify at least 100000 (default) or larger.
a = rmst2adapt(indata=data, tau_star=seq(6,12,2), method="perturbation",
nmethod=nmethod, test="2_side", seed=123)
print(a)
#>
#> <Test result>
#> Candidate values of tau1: 6 8 10 12
#>
#> P-value: 0.85
#>
#>
#> <Treatment effect estimation>
#> Selected tau: 6
#>
#> RMST(arm1) RMST(arm0)
#> 4.985 4.885
#>
#> RMST(arm1-arm0) lower 0.95 upper 0.95
#> 0.100 -0.360 0.561
#>
#>
#--- Adaptive long-term RMST test/estimation method by ltrmst2adapt() ---#
data = cm214_pfs
b = ltrmst2adapt(indata=data, tau1=c(0,1,2,3), tau2=10,
test="2_side", seed=123)
print(b)
#>
#> RMST over the time window [3,10]
#>
#> RMST(arm1) RMST(arm0)
#> 4.415 4.191
#>
#> RMST(arm1-arm0) lower 0.95 upper 0.95 p_value
#> 0.224 -0.218 0.666 0.332
#>
#>